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Abstract. A method for evaluation of parasitic frequency modulation
(wow) in archival audio is presented. The proposed approach utilizes sinu-
soidal components as their variations are highly correlated with the dis-
tortion variations. The sinusoidal components are extracted from audio
signal by means of sinusoidal modeling procedures being often severely
distorted and in case of wow also significantly modulated. The algo-
rithm for sinusoidal component evaluation utilizes both magnitude and
phase spectra information to enhance the tracking process. Additionally,
a neural-network based prediction module is proposed to improve the
tracking abilities in case of component discontinuities. Experiments con-
cerning prediction of tonal component’s values are performed revealing
that prediction can enhance sinusoidal modeling of wow distorted signals
effectively.

1 Introduction

Wow defect is a distortion defined as parasitic frequency modulation and it is
perceived as pitch fluctuation of audio program. It is introduced into audio by
motor speed fluctuations, tape damages and inappropriate editing techniques [1].
As wow leads to undesirable variations of all frequency components in distorted
sound, the most straightforward approach is to track a particular component to
estimate the parasitic modulation.
The analysis of various frequency components was found to be applicable for wow
evaluation. These can be genuine sound tonal components [2,3] as well as arti-
fact components such as hum or bias [4,5]. The presented algorithm concerns the
first situation in which tonal components are employed for wow defect estima-
tion. This approach is based on sinusoidal modeling, since it is assumed that at
least few salient components can be found in the distorted signal. The presented
method is dedicated for accidental wow evaluation, which unlike pseudo-periodic
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wow found in gramophone recordings [6,7], is of short duration but of strong vari-
ations, simultaneously.
Since the audio program pitch is constant, the short duration of accidental wow
allows often employing a single tonal component if such a component is present,.
More often a set of tonal components must be used for wow evaluation. In this sit-
uation a median-based procedure is applied to the extracted tonal components
in order to indicate the most likely variations. This is, however, a non-trivial
tasks, because a very small differences between estimated and genuine modula-
tion waveform result in audible defects of the restored signal. Thus it is essential
to maximize the number of validly extracted tonal components.
In this paper, the algorithm for wow evaluation based on magnitude and phase
spectrum is presented. Also experiments concerning prediction of tonal compo-
nent’s values are performed, since it is assumed that prediction can enhance
sinusoidal modeling of wow distorted signals effectively.

2 Sinusoidal Modeling of Polyphonic Sounds

The variations of tonal components strongly correspond to variations of par-
asitic modulation waveform thus wow estimation can be performed by means
of tonal component analysis. The very common approach for tonal analysis of
audio signals is sinusoidal modeling. This approach, based in Fourier Theorem,
expresses the audio signal as a sum of sinusoidal components having slowly-
varying frequencies and amplitudes. For audio signal the following relation can
be shown:

x(t) =
P∑

p=1

ap(t)cos
(
φp(t)

)
. (1)

φp(t) = φp(0) + 2π

∫ t

0

fp(u)du. (2)

where P corresponds to number of sinusoidal components (partials). The param-
eters ap and fp correspond to amplitude and frequency values of partial. The suc-
cessive values of fp ,which create the frequency track, also called MQ track, are
processed to obtain the wow modulation pattern called P itch Variation Curve
(PV C).
Sinusoidal modeling, initially used in additive synthesis [8], was found useful in
numerous applications including audio sound restoration [9]. However, the orig-
inal purpose of sinusoidal modeling was the analysis of simple sounds (musical
instruments, speech), fitting to the assumption expressed by (1), and distorted
archival sounds, which are of interest here, having more complex tonal structure.
The modeling of such sounds signals is at least less effective and surely more dif-
ficult, since they are likely to be contaminated by several distortions e.g., noise,
clicks, which are represented by non-sinusoidal components. Moreover, the wow



3

distortion itself introduces frequency modulation to the tonal components, which
if strong, makes the analysis very difficult. Figure 1 shows the tonal components
of a clarinet sound and of a wow-distorted sound (archival sound example). It
can be noticed that tracks of a clarinet sound are smooth while tracks of wow
distorted sound are rough.
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(a) Frequency tracks from a clarinet sound.
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(b) Distorted frequency tracks from a wow-
contaminated sound.

Fig. 1: Frequency tracks evaluated by means of sinusoidal modeling.

Different attempts have been taken to enhance sinusoidal modeling of poly-
phonic and non-stationary signals. The main difference between modeling of
monophonic and polyphonic signals is that the trajectories of stationary mono-
phonic signals (steady-state sound) can be formed when only frame-to-frame
information is used. In case of non-stationary monophonic (e.g. having emphvi-
brato, portamento) and polyphonic signals the trajectories formation should be
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performed on the basis of a number of adjacent time-frames analysis. Such an
approach, proposed in [10] utilizes the analysis of future possible trajectories of
a particular track. The optimal trajectory is assumed to be the track continu-
ation. The approach employed Hidden Markov Models to deter-mine the best
trajectory.
Another approach was proposed by Lagrange at all [11]. It also analyses the
future trajectories but those ones created by predicted values. Linear prediction
(LP) is used forecast the succeeding values of a frequency track. It is showed that
this kind of processing can effectively enhance the tracking of modulated tonal
components (having vibrato). Sinusoidal modeling enhanced by linear prediction
was also used for sound gap restoration [12,13].
This approach appears to be valid also for modeling of wow-distorted signals.
However, as already shown in Fig. 1, tonal components of wow-distorted sounds
are of non-linear nature. In such a situation the non-linear modeling should be
performed, thus neural-networks-based prediction is proposed instead of linear
prediction.

3 Neural Networks

3.1 Multi-Layer Perceptron

Time series forecasting is one of the most popular usage of the artificial neu-
ral networks (ANN ). Neural networks (NN ) prediction applications date back
to 1964 and from that moment were commonly used in different scientific re-
searches and practical applications (see [14] for comprehensive overview). The
NN are self-adaptive methods with many benefits comparing to standard and
well known prediction techniques such as the linear prediction. Main NN ad-
vantages arise from few priori assumption needed about the input data as well
as abilities to generalize and model nonlinearities. The later factor is especially
important to this research as the MQ trajectories with wow defect are highly
nonlinear, which can be noticed in Fig. 1. Different ANN’s were used to forecast
time series. Among many others the multi-layer perceptrons (MLP) which are
feedforward networks seem to be the most popular [14,15,16,17,18,19]. Thus, the
MLP was used in the described experiments. A typical MLP structure is given in
the Fig 2. The MLP structure is defined by several variables. The key factors are
the numbers of inputs, outputs and hidden nodes. Also other determinants such
as the activation functions, the nodes interconnections, the training procedure
and the input data normalization play important role in MLP-based forecast-
ing. Detailed reasoning behind the chosen MLP structure used in prediction
measurements as well as the experiments outline is given in Section 5.

3.2 Error Measures

Different error measures can be applied as the forecasting performance indica-
tors (see [14] for overview). Each of them has some advantages and limitations
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Fig. 2: Typical multi-layer perceptron MLP.

and there is no common agreement which one is appropriate for most forecasting
situations. As both prediction methods utilized the same data in the performed
experiments the mean square error (MSE, defined by (3)) was computed allow-
ing for direct comparison of both methods.

MSE =
∑

e2
t

N
. (3)

where, et is an individual forecast error, N is a number of error terms.
Additionally, the median absolute percentage error (MdAPE, defined by (4))
was evaluated to assess the relative forecasting accuracy of both methods:

MdAPE = median
( | et |

)
. (4)

where, et is an individual forecast error.
Both error measures were recommended by Gardner [20] and used by Zhang,
Patuwo and Hu in their comprehensive study of MLPs prediction abilities [19].

4 The Algorithm for Wow Evaluation

Wow modulation pattern is obtained in two stages. In the first stage, the sinu-
soidal modeling is performed which takes as an input the distorted sound and
as an output the frequency tracks (frequency values). The block-diagram of this
stage is presented in Fig. 3. The second stage computes PVC from the evaluated
frequency tracks.
An input signal is divided into analysis frames (time-frames) by means of win-
dowing. The Hamming window is used in order to achieve a good main-lobe to
side-lobe rejection ratio. The zerophase windowing is performed to remove linear
trend from phase spectrum [8]. The analysis frame is also zeropadded to improve
frequency resolution. DFT of each analysis frame is computed to obtain spec-
trogram representation. Next, candidates for tonal components are evaluated as
meaningful peaks of magnitude spectrum according to the following formula:

Xm(k − 1) < Xm(k) ∧ Xm(k + 1) < Xm(k). (5)
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Fig. 3: Block diagram of sinusoidal modeling approach for wow evaluation.

The instantaneous ”true” frequencies of evaluated peaks are determined be
means of frequency reassignment (6)[21]. This is fairly essential since a certain
error is introduced to frequency estimation by DFT. The frequency reassignment
method as-signs a value of frequency to center of gravity of each bin instead of
geometrical center [22]:

f̂0 = k
Fs

N
+ =

{
Xw′(k)
Xw(k)

}
Fs

2π
. (6)

where Xw(k) and Xw′(k) are DFT spectra using window and its derivative.
The last step of sinusoidal modeling is frequency track formation. Firstly, the
evaluated peaks are sorted due to their magnitude values in order to select the
most salient components. Unlike in usual additive synthesis processing, only the
most salient components are extracted since they are assumed to depict the wow
defect most reliably. Secondly the peaks are linked to existing trajectories in a
frame-to-frame processing [23]:

∣∣f i−1
k − f i

l

∣∣ < ∆f . (7)

where, f i−1
k is the frequency of the processed track in frame i− 1 and f i

l is the
frequency of matched peak in frame i. The parameter ∆f (frequency deviation)
is the maximum frequency distance between track and its continuation.
This criterion allows matching peaks to the trajectories however it does not val-
idate the selected continuation. Magnitude values can be also used to enhance
the tracking however the amplitude trajectory was found to have irregular pat-
terns. It is propose to utilize also phase spectrum information to validate the
continuation.
For the analyzed partial having phase value φi−1

k in frame i−1 , the phase value
predicted in frame i is equal to:

φ̂i
k = φi−1

k +
R

NDFT
. (8)

where, NDFT is the length of the zeropadded DFT and R is the frame hop
distance. The error of phase prediction can be evaluated as:

φerr =
∣∣φ̂i

k − φi
l

∣∣. (9)
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The prediction error φerr is in the range [0; π). The value near 0 suggests phase
coherence in two adjacent frames. Otherwise, if value of error is near π, it may
indicate phase incoherence and invalid track continuation (see Sect. 4).
The presented algorithm for partial tracking employs frequency matching crite-
rion (7) for continuity selection and phase prediction error for the validation of
that continuity. The track termination is associated with a high value of phase
prediction error, being different from the original frequency deviation condition
(8).
After the frequency tracks are evaluated PVC is computed. Firstly, tracks are
normalized in a way that ensures the value 1 for the parts of analyzed signals
which are not distorted. It is assumed that the first few frames of input signal are
not distorted. The normalization of tracks values to relative values is performed
in the following manner:

RFk(i) =
f i

k

f1
k

. (10)

where f i
k is the value of frequency track in the frame i ,and f1

k is the value of
frequency track in the first frame.
It was found sufficient to utilize only one frequency track for PVC generation
under condition that this track has valid values throughout the whole selected
region. More often, however, PVC must be evaluated on the basis of a few tracks,
The median was found to provide a satisfactory PVC evaluation for this purpose
[1]. The median- based PVC is evaluated as follows:

PV Cmedian(i) = median
(
RFk(i)

)
. (11)

5 Experiments

5.1 Sinusoidal Modeling of Wow Distorted Sounds

The experiments were carried in two steps. Firstly, the tracks were evaluated by
means of the algorithm presented in Sect. 4. In the second step the linear-based-
prediction and neural-networks-based prediction applied to frequency tracks are
com-pared. The archival sound example from the Polish National Film Library
and from the Documentary and Feature Film Studio was chosen. The spectro-
gram and evaluated tracks are depicted in Fig. 4.
It can be noticed that some tracks are distorted and the tracks having high
frequency values are also erroneously linked due to strong parasitic modulation.
Although the PVC computation based on the detected tracks is valid (Fig. 5) it
is strongly desired to improve the tracking. The first problem concerns the eval-
uated tracks which genuinely belong to one component. This situation is well
depicted by the tonal component having its values around 1800 Hz (Fig. 5). The
preferred situation would be that this component is evaluated as a one frequency
track. It is, however, non-trivial task since the component is visibly distorted.
Another problems concerns the erroneous tracking when a strong parasitic mod-
ulation occurs, especially for high-frequency components (see components at the
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Fig. 4: Tracks evaluated by the algorithm. The track depicted by a bold line is
used in further experiments.

1 second in Fig. 4). The tracks variations are so high that frame-to-frame pro-
cessing does not allow valid tracking.
To overcome mentioned problems an experiment concerning prediction of future
track value is performed.
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Fig. 5: Fragment of PVC courses. Solid line corresponds to PVC evaluated from
single track. Solid thin line corresponds to PVC evaluated from a set of tracks.
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5.2 Experiments Concerning Prediction of Tracks Future Values

In order to examine the LP and NN performance in the prediction of the MQ
trajectories two simulated experiments were performed. Firstly the LP-based
forecast were computed and then compared with results of the NN-based pre-
dictions. In both prediction methods the numbers of inputs and prediction algo-
rithms complexity were selected as experimental factors. The experiments were
conducted for one-sample-ahead forecasting.
In both experiments some real MQ trajectories obtained from archival sound
tracks were selected as the input data. All of the tracks were preprocessed to
better fit the inputs of the prediction methods. Firstly an external normalization
was performed. The input data were normalized to the range from -0.9 to 0.9
according to equation (12).

xo = 1.8
(xn − xmin)
xmax − xmin

− 0.9 (12)

where, xn is a input data sample, xmin is a minimal value in the input data set,
xmax is a maximal value in the input data set.
After the linear operation the statistical normalization which is given by equation
(13) was performed.

xo =
xn − x̄

s
(13)

where, xn is an input data sample, x̄ is a mean value of the input data set and
s is a standard deviation of the input data set.
At the end the input vectors were smoothed using a 3-rd order moving average
zero-phase filter. The MQ trajectory is given in Fig. 6 (depicted as bold white
line) the one from Fig. 4 processed in such a manner.

5.3 Linear Prediction

The LP abilities to forecasts MQ trajectories were tested on the same sample
set as the NNs. A sliding-time-window technique was used. In each time window
the prediction filter was build and one sample was forecasted. The prediction
involved a different combination of LP parameters. The subject of examining
were: the algorithm order (LP order) which defines the number of the predic-
tion filter coefficients, and the LP length which is the number of past samples
used to find the coefficients. The autocorrelation method of autoregressive (AR)
modeling was used to compute filter coefficients. The obtained results are given
in It can be noticed from Tab. 1 that the key factor influencing the prediction
performance is the LP length, i.e., the prediction error decreases with greater
lengths. The LP order plays less important role and according to obtained re-
sults a greater number of LP coefficients can trigger a higher prediction errors.
It is probably due to the chaotic nature of the MQ trajectories, whereas, the LP
tries to model it as a linear process.
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Fig. 6: A preprocessed frequency track.

Table 1: LP-based Prediction Error

LP length LP order Error Measure

4 0.0116 MSE
0.3156 MdAPE

8 0.0045 0.0052 MSE
0.1838 0.2110 MdAPE

16 0.0029 0.0031 0.0037 MSE
0.1491 0.1512 0.1682 MdAPE

32 0.0020 0.0021 0.0022 0.0025 MSE
0.1226 0.1247 0.1275 0.1365 MdAPE
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5.4 NN-Based Prediction

One of the most popular ANNs used for the time series forecasting are the
multi-layer perceptrons (MLP) [[14,15,16,17,18,19]]. Several factors constitute
the overall MLP-network architecture. The key factors are the number of layers,
the number of nodes in each layer, and the neuron’s activation functions. Also
the learning algorithm as well as the training and validating sets can play some
role on prediction results.
Several studies give some practical guidelines for choosing the NN architecture,
however, a systematic approach to this problem is not known to the authors.
Some theoretical works showed that a single hidden layer is sufficient for ANN
to approximate any nonlinear function with a desired accuracy [24,25]. It is also
the one-hidden-layer MLP which was most commonly used in the forecasting
applications so far [14]. Thus only one hidden layer was used in the conducted
experiment. Considering the number of input and hidden nodes resent findings
of Zhang, Patuwo and Hu [19] showed that in case of the MLP-based one-sample-
ahead forecasting greater attention should be put on the input’s number. There-
fore in the presented experiment only the input layer size was varied. The number
of hidden-layer nodes was equal to current inputs number. The input layer sizes
were chosen to allow comparison with the LP-based prediction method, and were
set to 2, 4, 8, 16 and 32 samples. The neuron-activation functions were chosen
following the standard convention following by most of the authors [14]. The
logistic functions were used for hidden nodes and linear function for the output
node.
The training set (in-sample data) and testing set (out-of-sample) were build of
some real MQ trajectories which were processed according to normalization and
smoothing procedures given earlier on (see (11) (12) and the following para-
graph). As the in-sample data the 80 % of the trajectory values were used. The
remaining 20 % constituted the out-of-sample set.
The Levenberg-Marquardt backpropagation was employed as the training algo-
rithm. This method was found out to converge faster then the standard gradient
descent with momentum and adaptive learning rate backpropagation. Both the
goal MSE value and the minimum performance gradient were set to 0.001. The
maximal number of epochs was set to 1000.
The sliding windowing technique was used in the NN performance evaluation.
The utilized time window was build of data from the out-of-sample set. After
each prediction the network’s weights and biases were changed allowing for the
NN adaptation. Experiments on each MLP structure were repeated 200 times
with randomly initiated weights and biases. The overall MSE was computed as a
mean values along all of the individual MSEs. The overall MdAPE, on the other
hand, was computed as the median value of the local MdAPEs. The obtained
results are given in Tab. 2.
It can be noticed from the Tab. 2 that with the increasing number of the input
nodes the prediction error decreases. However, after reaching the point of 16
inputs it grows up again. It is probably due to the under-fitting in the learning
stage as the 32-32-1 structure is quite large and a lower goal MSE should be
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Table 2: NN-based Prediction Error

MLP Structures Error Measure
2-2-1 4-4-1 8-8-1 16-16-1 32-32-1

0.0086 0.0018 0.0009 0.0009 0.0035 MSE

0.0898 0.0777 0.0706 0.0679 0.0817 MdAPE

used here. Yet the most important observation is that the NN performance is
better then the LP-based forecasting (see Tab. 1). Only the MSE for the sim-
plest MLP structure is greater then the LP prediction error. All the other error
measurements indicate lower values for the NN-based forecasting.

6 Conclusions

The conducted experiments aimed at showing that a prediction module can
enhance the sinusoidal modeling (that was also showed in some cited papers),
however the experiments were focused rather on neural-networks-based predic-
tion, since LP-based prediction was assumed to not fit the non-linear model of
wow-distorted tracks. The main conclusion which can be drawn from the fore-
casting experiments is that the NNs outperforms the simple LP methods used so
far for the perdition of the future values of the MQ trajectories. These findings
are consistent with general knowledge about the NN abilities to model and to
forecast non-linear functions. Further research is needed, however, to determine
the most appropriate MLP structure for the MQ forecasting task. Also, a greater
attention must be put on the preprocessing stage as it can influence the obtained
results. The final conclusion is that even at the present stage of research, the
intelligent approach to parasitic modulation in audio brought some interesting
and practically justified results.
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